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Autonomous systems, particularly unmanned aerial systems (UAS), remain limited in au-

tonomous capabilities largely due to a poor understanding of their environment. Current sensors

simply do not match human perceptive capabilities, impeding progress towards full autonomy. Re-

cent work has shown the value of humans as sources of information within a human-robot team;

in target applications, communicating human-generated ‘soft data’ to autonomous systems enables

higher levels of autonomy through large, efficient information gains. This requires development

of a ‘human sensor model’ that allows soft data fusion through Bayesian inference to update the

probabilistic belief representations maintained by autonomous systems. Current human sensor

models that capture linguistic inputs as semantic information are limited in their ability to gener-

alize likelihood functions for semantic statements: they may be learned from dense data; they do

not exploit the contextual information embedded within groundings; and they often limit human

input to restrictive and simplistic interfaces. This work provides mechanisms to synthesize human

sensor models from constraints based on easily attainable a priori knowledge, develops compression

techniques to capture information-dense semantics, and investigates the problem of capturing and

fusing semantic information contained within unstructured natural language. A robotic experimen-

tal testbed is also developed to validate the above contributions.
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Chapter 1

Introduction

The late 20th century has seen a proliferation of autonomous systems in commercial, military

and home environments. While a universally accepted definition of autonomy proves elusive, we

can generally describe autonomy as any self-governing system. A prominent form of these systems

is the robot: a physical embodiment of autonomy, with the ability to sense, plan and act within an

environment. A major driving factor to build and integrate these autonomous systems is delegation;

we give robots tasks that we would rather not do, primarily because these tasks are dull, dirty or

dangerous. This is underscored by the fact that the word robot itself comes from the Czech word

robota meaning forced labour – our motivation is to build robots that we can command to perform

unpleasant tasks in our place.

The focus on delegation, however, is countered by the importance of interaction. Full auton-

omy is often seen as the pinnacle of autonomous systems development – we would like to delegate

high-level tasks to an autonomous system, and have it carry the task out with minimal guidance.

The main point in delegating tasks is to not have to specify a complete breakdown of the task

structure, watch over the autonomous system as it performs the task, and to correct it at every

failing; we want to minimize our effort in the process of delegation.

However, full autonomy is both complex and, in many cases, insufficient. Parasuraman’s

landmark paper on levels of automation [1] argues for autonomous systems to be designed based on

expected levels human interaction – we must consider not only delegation mechanisms, but inter-

action mechanisms as well. Interaction supports delegation through clarity of task assignment and
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provides an avenue through which autonomy can better understand the world. While interaction

may add additional overhead to the process of delegation, it may also enable a robot to perform

tasks it would otherwise be unable to do, while giving the interacting human a better understanding

of the robot.

This is particularly important in human-robot teaming. Humans excel at certain things

robots find difficult – perception, interpretation and forethought. Conversely, robots tend to excel

at high-speed calculation, optimal decision-making, and performing repetitive tasks. In general,

both humans and robots posses complementary skillsets that support one-another when working

in concert. When designing for human-robot teaming, one should attempt to maximize the mutual

benefit of interaction while minimizing its overhead.

For example, much of the work done by Goodrich et al. [2–6] focuses on minimizing operator

workload in teams of humans and unmanned aerial systems (UASs). In wilderness search and

rescue (WiSAR), each individual UAS may be supported by a UAS payload operator, a UAS flight

operator, a mission manager, and ground operations personnel. This presents the issue of scale:

the overhead of interaction required by the UAS requires multiple humans to continuously delegate

lower-level tasks, as the UAS is not developed enough to provide higher levels of autonomous

reasoning. Aside from minimizing the workload of each operator with respect to the UAS, it is also

desirable to invert this human-to-autonomy ratio, such that a single operator is able to delegate

to multiple robots simultaneously. Both these goals can be achieved through greater efficiency in

delegation through higher levels of autonomy.

Many autonomous systems are limited in their ability to sense their surrounding environment.

Visual perception in particular is a difficult problem which robots have yet to truly solve; yet,

humans are adept at interpreting visual sensory information. It follows that if a human were able

to provide sensory information to a robot, as so-called soft data[7], the robot would be able to

fuse this information with its model of the world and information it collects from other sensors,

so-called hard data. While providing soft data to a robot necessarily adds overhead to the human-

robot interaction, we posit that this is of net benefit to the human-robot team until autonomous
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systems are equipped with perceptive abilities equal to a human’s.

The goal, then, is to define mechanisms for providing soft data to autonomous systems so that

the autonomy is able to make better decisions based on a better understanding of the environment.

This notion runs in parallel to delegation: we provide a robot with some task, then assist the robot

with its task when appropriate. If the goals of the human and robot are aligned (which is to be

expected, as the latter are designed), then we expect greater achievement of the human-robot team

through interaction. From the perspective of the robot, the human is considered to be both an

issuer of tasks as well as one of its sensors. As with any other sensor, a human sensor model must

be developed and calibrated in order to provide soft data to the autonomous system.

The primary mechanism for communication considered in this work is semantic language: a

set of signifiers (words, phrases, symbols) that each represent a unit of information. The complexity

of sensory perception is well mirrored by the richness and flexibility of semantic language; for

example, the statement, “The target was under an oak tree three minutes ago and is now limping

north along the river’s east bank,” contains multiple units of information that may be simple for

a human to perceive, but hard to communicate to a robotic counterpart. The challenge lies in

mapping semantic information to a form that can be well-represented by an autonomous system.

We take the Bayesian approach to this problem, in which the observation likelihood function maps

from categorical semantic labels to probabilistic state information; with properly modeled likelihood

functions, we can translate from semantic language to probabilistic information representations.

This work contributes two techniques to enable the development of human sensor models: one

technique allows for the synthesis of likelihood functions through imposition of constraints rather

than calibration using dense training data; the other technique provides compression algorithms

for information-rich semantic statements to allow efficient online data fusion. The remainder of

the work provides progress toward the problem of mapping from unstructured natural language to

well-known human sensor models. This work is considered within the context of an experimental

setup where a human and remote robot share information to accomplish the task of finding other

robots located near the remote robot.
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Chapter 2

Background

If our goal is to help humans and autonomous systems communicate, we need to speak in

a common language. Just as humans have verbal and written languages to communicate ideas,

so have we developed mathematical languages to communicate information. This work makes

use the softmax function as a ‘translator’ between categorical semantic labels and probabilities

associated with dynamic state information. This chapter contains the formal background required

to understand both the key properties of the softmax function and how to learn functions from

human training data. We also discuss related work in sharing information between humans and

robots, whether in developing human sensor models or providing natural language commands to

robotic partners. The guiding thought behind this chapter is that we can relate elements of human

language to observation likelihood functions that can be used to update a belief over dynamic

states.

2.1 Uncertainty in Semantic Communication

To guide discussion, we nominally consider examples from a simple target search problem,

in which a human and robot jointly search for one or more targets of interest. There are several

communication pathways a human can use to specify state information, from language (both written

and spoken) to graphical interfaces [8] to gestures [9]. Each communication pathway trades between

precision and communication speed; for instance, it would be faster to use qualitative language (e.g.

“Target is near the chair.”) rather than quantitative language (e.g. “Target is exactly 1.45 meters
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North and 0.31 meters East of the chair.”) albeit less precise. While previous work has explored

quantitative language [10], we focus on qualitative language only.

In communicating a message from a source to a destination, multiple sources of uncertainty

can be considered. Take the phrase, “I think the person is near that house.” The sources of

uncertainty include:

(1) Knowledge uncertainty, where the source provides an uncertain observation (i.e. “I think

the person is near that house.”). Capturing this uncertainty requires a model of the source’s

accuracy; in other words, calibrating the source’s sensor noise1 .

(2) Transmission uncertainty, where some noise corrupts the transmitter-receiver pathway (i.e.

I said, “I think the person is near that house,” but you heard, “I know the person is far

from that house.”). This is most common in speech- and gesture-based communication,

but chat and graphical interfaces greatly reduce or eliminate transmission uncertainty.

(3) Semantic uncertainty, where the meaning behind chosen words is uncertain (i.e. what does

near mean?). Quantitative language eliminates semantic uncertainty, often at the expense

of knowledge uncertainty due to inherent human biases in quantitative value estimation

which must be learned [10].

(4) Lexical uncertainty, where multiple words can be used to describe similar concepts (i.e. how

well close to, nearby and next to describe near?). Using a language in which all words have

a one-to-one mapping to distinct concepts eliminates lexical uncertainty, but this requires

either a limited language or modeling the entire language.

Knowledge uncertainty is closely tied to the data-association problem, which asks, “Given

multiple possible targets, which measurements are associated with which targets?” The observation

data may also be associated with no target (commonly understood as a false observation that should

be simply ignored). This is a non-trivial problem, though radar tracking literature in particular

1 In the case of a human source, this describes the source’s true uncertainty rather than perceived uncertainty,
although perceived uncertainty is often an indicator of true uncertainty.
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provides typical approaches for capturing this knowledge uncertainty; simpler techniques such as

the interacting multiple model multi-hypothesis tracker (IMM-MHT) [11] provide a weighted sum

over hypotheses provided by a bank of Kalman filters. While not a solved problem, capturing

knowledge uncertainty is well-understood in the literature and not a focus of this work.

Transmission uncertainty is similarly well-understood by the signal processing community.

Within the space of human-robot interaction, work typically revolves around defining measures

for a robot’s perception of the corruption of the source signal, i.e. Sattar and Dudek’s work in

estimation of uncertainty in gesture recognition [9]. The transmission uncertainty, coupled with

the cost of misinterpreting the gesture, are then evaluated to determine whether the robot should

ask for clarification before performing a task. This type of uncertainty is heavily dependent on the

transmission medium, and is not a focus of this work.

Semantic uncertainty is potentially the least well-understood of the four types of uncertainties

defined above within the context of human-robot interaction. Qualitative language is necessarily

vague and its semantic meaning is typically captured either as a fuzzy set [12] or probabilistically

[13]. As discussed in [14], the vagueness of language is reflected by its inherent epistemologically

uncertain semantic meaning – that is, this uncertainty should not necessarily be minimized, but

rather maintained as useful information. Much of the efforts in capturing semantic uncertainty

for human-robot interaction are related to robot control, in which a human utterances must be

grounded to semantically meaningful concepts, typically through a probabilistic relation (e.g. in

[15–23]). Capturing semantic uncertainty in the context of human sensing typically requires a prob-

abilistic representation of semantic meaning (e.g. normalized exponential likelihood [24], random

finite sets [25], variable-sized grids [26]). This uncertainty measure is the primary focus of this

work, covered in Chapter 3.

Lexical uncertainty has long been a focus of the natural language processing (NLP) com-

munity. Recent efforts in word sense matching have provided robust similarity measures between

words, particularly from Mikolov’s skip-gram negative sampling (SGNS) approach that allows high-

dimensional word vector embeddings to be easily and quickly trained from large corpora [27]. This
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is an optimization of the shallow, two-layer neural net approach dubbed word2vec. Example ex-

tensions to this approach provide greater word sense matching accuracy (e.g. capturing differences

between homographs like ‘bear,’ which could be either an animal or an action) through: training

based on syntactic dependency contexts rather than bag-of-words contexts [28]; embedding part-of-

speech tags alongside word vectors [29]; and infinite-dimensional word embeddings [30] for efficient

multimodal sense matching. Capturing lexical uncertainty is a secondary focus of this work, covered

in Chapter 4.

In developing some translation mechanism for phrases like, “I think the person is near that

house,” we must be able to account for all these types of uncertainty embedded within the phrase.

These are not necessarily the only types of uncertainty found in linguistic human-robot communi-

cation, but it is argued that these are the predominant ones.

A major source of prior work in capturing semantic uncertainty is the work performed by

Ahmed in both modeling semantic statements and fusion of these modeled likelihoods with multi-

modal prior beliefs [8, 24,31–35]. This work will be discussed in the following subsections.

2.1.1 Bayesian Inference with Semantic Observations

We now consider the formal problem of data fusion with semantic observations using Bayesian

inference. One benefit of semantics is the richness of possible state variables to consider: a human

may want to describe a target’s position, speed, heading, movement patterns, size, weight, expected

position, movement path, etc. This represents a problem of tracking a state with both continuous

random variables and discrete random variables, as well as mapping the semantic observations to

these states. We consider only the case of continuous states within this work, but hybrid continuous

and discrete distributions are well-studied in the literature [36]. What follows is a brief overview

of a method that develops and uses this mapping between categorical semantics and n continuous

states, predominantly developed by Ahmed [24].

The state vector Xk∈ Rn is composed of n dynamic, continuous state variables, where k ∈ Z0+

is the time index. Hard sensor data ζk may be provided in the form of continuous measurements (e.g.
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from ultrasonic range sensors) or discrete measurements (e.g. from mechanical bumper sensors).

Soft sensor data Dk may be provided as one of m ∈ Z+ categorical semantic labels for human

observations. The hard data joint conditional observation likelihood p(ζk | Xk) is assumed known.

The soft data conditional observation likelihood is P (Dk = i | Xk), where i = 1, 2 . . . ,m indexes

one of the mutually exclusive and exhaustive semantic labels such that
∑m

i=1 P (Dk = i | Xk) = 1.

The sequences of all observations accumulated until time k are denoted ζ1:k ≡ {ζ1, ζ2, . . . , ζk} and

D1:k ≡ {D1, D2, . . . , Dk}.

With known initial prior probability density function (pdf) p(X0) and known state transition

pdf p(Xk | Xk−1), state information at time k conditioned on all previous information D1:k−1 and

ζ1:k−1 can be found through the Chapman-Komolgorov [37] equation:

p(Xk | ζ1:k−1, D1:k−1) =

∫
p(Xk | Xk−1)p(Xk−1 | ζ1:k−1, D1:k−1)dXk (2.1)

The hard data measurement update step fuses information contained in ζk with the latest

available information p(Xk | ζ1:k−1, D1:k−1) via Bayes’ rule:

p(Xk | ζ1:k, D1:k−1) =
p(ζk | Xk)p(Xk | ζ1:k−1, D1:k−1)∫
p(ζk | Xk)p(Xk | ζ1:k−1, D1:k−1)dXk

(2.2)

Similarly, the soft data measurement update step fuses information contained in Dk with the

latest available information p(Xk | ζ1:k, D1:k−1) via Bayes’ rule:

p(Xk | ζ1:k, D1:k) =
P (Dk | Xk)p(Xk | ζ1:k, D1:k−1)∫
P (Dk | Xk)p(Xk | ζ1:k, D1:k−1)dXk

(2.3)

In general, recursive Bayes’ filters such as the Kalman filter (or a non-linear variant) [37],

particle filter or Gauss-sum filter [38] can be used to find the pdfs for (2.1) and (2.2). As well, Ahmed

[24] demonstrates a variational bayes with importance sampling (VBIS) method to perform the soft

data fusion step (2.3) using a Gaussian mixture (GM) prior and softmax likelihood to generate a

GM posterior. This accumulates all available information into an estimate of the state Xk at time

k, but requires a well-defined soft observation likelihood P (Dk | Xk). For the remainder of this
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work, we focus on the soft data measurement update step, denoting p(Xk) ≡ p(Xk | ζ1:k−1, D1:k−1)

and p(Xk | Dk) ≡ p(Xk | ζ1:k−1, D1:k as the Bayesian prior and posterior (respectively) in (2.3),

leading to the following reformulation of (2.3):

p(Xk | Dk) =
P (Dk | Xk)p(Xk)∫
P (Dk | Xk)p(Xk)dXk

(2.4)

The GM prior is a weighted sum of Nmix n-dimensional normal distributions:

p(Xk) =

Nmix∑
l=1

wlN (Xk;µl,Σl) (2.5)

Where mixand l is weighted by a factor 0 ≤ wl ≤ 1 such that
∑Nmix

l=1 wl = 1, and parametrized

by mean µl ∈ Rn and covariance Σl ∈ Rn×n. This weighted sum of Gaussians is able to represent

arbitrary smooth distributions compactly, providing several advantages over similar multimodal

probabilistic state representations, such as grid-based or particle-based methods. Primarily, a

fixed upper bound for Nmix limits the computation expense of (2.4) while GM merging minimizes

the information loss of reducing Nmix[39], allowing selection of Nmix to trade between accuracy

and computability. While grids may trade between accuracy and computability through variable

cell size [26], they suffer from the curse of dimensionality for high-dimensional states, they do

not interact easily with hard sensor fusion techniques (e.g. Gaussian posteriors generated from

extended and unscented Kalman filters) and their representations are not compact. Similarly,

particle representations trade accuracy and computability through the number of particles used,

but will not be compact for highly multimodal states, suffer from sample degeneracy (e.g. when

observations are given for states with relatively few nearby particles), and also scale poorly in

high-dimensional state spaces.

The softmax likelihood function is a normalized exponential:

P (Dk = i | Xk) =
ew

T
i Xk+bi∑m

j=1 e
wT

j Xk+bj
(2.6)

Where parameters Θi = {wi, bi} determine the shape of each softmax class P (Dk = i |
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(a) Softmax model of joint range and bearing labeled
classes.

(b) Multimodal softmax model of range superclasses.

Figure 2.1: Observation likelihoods for categorical labels represented as (a) softmax classes and
(b) softmax superclasses. Reprinted from [24], c©2013 IEEE.

Xk) specified by class label i relative to all m class labels within the complete softmax model.

Specification of these parameters is crucial and discussed further in both this and later sections.

Each softmax class is convex in Xk, thus, unimodal. To represent multimodal likelihoods, we can

sum over multiple unimodal classes to generate a multimodal softmax (MMS) model:

P (Dk = i | Xk) =

∑
r∈σ(i) e

wT
r Xk+br∑S

j=1 e
wT

j Xk+bj
(2.7)

where the numerator now takes the sum over each subclass r in the set of subclasses σ(i) for

each class i, and S =
∑m

j=1 |σ(j)| represents the total number of subclasses.

An example of a two-dimensional softmax model with joint range and bearing semantic class

labels is shown in Fig. 2.1a. A MMS representation is shown in Fig. 2.1b, where the range-only

classes (i.e. near) are obtained by summing over all joint range-bearing subclasses containing the

parent class (i.e. near east, near north-east, etc.). For simplicity, we will consider both cases of

softmax as well as MMS likelihoods when referring to softmax likelihoods, unless otherwise specified.

Figure 2.2 illustrates a simple one-dimensional case of VBIS data fusion approximation to

(2.4). The softmax class label slow (corresponding to the red curve in Fig. 2.2b) is observed.
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(a) Gaussian mixture prior. (b) Softmax model likelihoods. (c) Gaussian mixture posterior.

Figure 2.2: Example of VBIS fusion for a 1D state space with a semantic observation of ‘slow’,
shown in red.

With multiple hypotheses represented in both the prior and posterior GMs, we see a significant

information gain from the data fusion of with the selected semantic observation – in this example,

we are far more confident that the target’s speed is close to 0.2 after the observation data has been

fused.

While the softmax function is shown to be an ideal method of mapping semantics to likelihood

functions, what remains to be seen is how to specifically construct these softmax likelihoods – how

do we select parameters to shape softmax classes that best represent semantic uncertainty?

2.1.2 Softmax Parameter Learning

One approach to defining softmax parameters is to use training data from human subjects to

‘calibrate’ the mapping of semantics to state space. Maximum likelihood learning can be performed

to find softmax parameters Θi that best fit the labeled training data. This is the inverse of

classification, which asks: given a state, which semantic labels best describe that state? We assume

the human can perceive the state (perhaps only a portion of the complete state), and provides a

classification label that probabilistically relates to each state variable.

For example, Fig. 2.3 shows learned probabilities for the semantic label nearby for two test

subjects from [24]. Each subject was tasked with labeling the spatial relation between multiple

objects. Xk, the 2-dimensional distance vector between objects, was known exactly and the human
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(a) (b)

Figure 2.3: Learned probability of near for two different test subjects. Reprinted from [24], c©2013
IEEE..

was restricted to range-only descriptors next to, nearby and far. Gradient descent in parameter

space was used to optimize randomly initialized parameters. The end result is a subject-specific

softmax model that provides data-calibrated likelihood functions for three range-only descriptors.

However, parameter learning techniques have several drawbacks, largely related to their in-

ability to generalize models in both size and shape. Scaling softmax models based on relative

reference object size is critical for capturing contextual information in semantic statements (i.e.

can near a square desk be mapped to near a square building?). Similarly, the experiment results

of Fig. 2.3 shows softmax parameters learned for the comparison of two points; what if each object

had some larger geometry? The shape of “beside a river” would clearly differ from the shape of

“beside a tree”, and it would be useful to transfer the notion of beside between the two rather

than retraining on every new reference object. As well, dense datasets are required to generate for

well-formed softmax likelihoods, as each softmax model contains |Θ| = m(n+ 1) parameters (this

becomes |Θ| = S(n+ 1) for MMS models).

Related to this, we have so far assumed mutual exclusion in semantic class labels – this is an

approximation: near is not mutually exclusive with far, rather, it is mutually exclusive with not
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near. A binary softmax model (BSM), composed of one label and its negation, would be a more

accurate representation of semantics, but would require exponentially more data to learn as both

a semantic label and its negation would require training data (i.e. data for far no longer informs

parameters for near). Additionally, we have only discussed single-observation softmax likelihoods.

Semantic language provides rich information that may contain multiple observations in one set of

semantic signifiers, but this is not well-handled by current softmax models. Chapter 3 will provide

insight into how we can use properties of the softmax function to resolve these issues and create

generalizable softmax functions that capture rich semantic statements with reference to contextual

information.

As well, we have only considered the softmax likelihood P (Dk = i | Xk) based on a known

semantic class label indexed by i. This assumes we are able to uniquely identify i from some seman-

tic language input; while natural language has associated structure, this is not a trivial problem.

Ahmed [24] bypasses this issue by allowing humans to select archetypal semantic statements from a

fixed dictionary, but this approach is rigid and unscalable. Chapter 4 provides some developments

towards incorporating chat-based unstructured natural language sensory inputs in human-robot

teaming.

2.2 Related Work

Literature related to the problem of providing natural language inputs as soft data for au-

tonomous systems typically falls into one of two categories: either developing human sensor models,

or providing natural language commands robot teammates.

2.2.1 Human Sensor Models

Kaupp et al. [10] provided one of the early works in defining a model of a human sensor fo-

cused on mapping between human-specified quantitative measurements to state-space observation

likelihoods. They encode the soft data observation likelihood as a unimodial conditional Gaussian,

which can be learned as described in section 2.1.2. Decentralized Bayesian data fusion using this
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quantitative human sensor model was experimentally validated in later work [40]. While this con-

ditional Gaussian likelihood function relates human-provided quantitative/continuous observations

to a continuous state space, it is neither able to relate qualitative/categorical labels to a continuous

state space nor able to consider multimodal observations (i.e. requiring both range and bearing

simultaneously, rather than range-only measurements). The ideal interface would allow for both

quantitative and qualitative multimodal inputs from human sensors.

Frost et al. [26] took steps towards developing a human sensor model based on qualitative

spatial language observations. Their method defines model likelihoods on an occupancy grid map

with variable-sized cells, defining functions that modify the likelihood that each cell is described by

a spatial relation. However, these functions are defined on a case-by-case basis: the likelihood for

between two reference objects is exactly 1 for each grid cell within the convex hull, and informally

defined outside of the convex hull as a function of distance to the center of the convex hull. Problems

associated with grids notwithstanding, limiting qualitative semantic information to spatial relations

is limiting, and more rigor is required when defining likelihood functions.

Similar to the tradeoff between accuracy and computation provided by Gaussian mixtures,

it becomes clear that data-driven approaches provide representational fidelity at the cost of dense

learning requirements, whereas functional approaches provide simple models that may not be well-

mapped to an individual human’s semantic meaning. The argument presented in section 3.2 is that

functional constraints may be imposed, alleviating data requirements for model parameter learning.

2.2.2 Natural Language Commanding

Delegation mechanisms have received more attention than information-providing mechanisms

in human-robot teaming literature, although progress in one domain is often applicable to both. The

primary difference between natural language commanding and natural language sensing is in the

Bayesian inference problem: commanding requires that a single action be taken, which means taking

the most likely hypothesis from Bayesian inference; conversely, sensing need not be constrained to

considering a single hypothesis, so many natural language commanding techniques throw away
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information that may be valuable to a natural language sensing approach. Nevertheless, lessons

learned from task delegation through natural language commands can be applied to providing soft

data through natural language sensing. The core difficulty in both commanding and sensing is in

grounding natural language to meaning – how do the words in the phrase, “Go to the third door

on the left,” map to actions and objects in the physical world?

Matuszek et al. [15] focuses on a semantic parsing of natural language commands to generate

sequences of desired actions to be taken in an uncertain environment. This semantic parser uses

experimental training data to define a distribution over a fixed set of robot control actions given

some natural language input. Language grounding is resolved through a probabilistic combinatory

categorical grammar (PCCG) which can be trained on natural language and semantic command

sentence pairs. Features trained include lexical features related to the natural language input and

semantic features related to a robot control language, but these are both based on binary co-

occurrence statistics between natural language and commands, requiring either significant amounts

of training data or a limited lexicon.

Similar work by Tellex et al. [17] approaches the grounding problem through the development

of a generalized grounding graph (G3): a bipartitie factor graph relating pre-categorized natural

language input to available figures, spatial relations and landmarks. Training data is collected to

learn weights for feature functions relating groundings, natural language inputs and known binary

correspondence variables between the two. This produces a massive joint inference problem over

all groundings and action sequences available; the approximate solution is found through a beam

search over natural language-grounding pairs. Following this work, distributed correspondence

graph (DCG) model is presented in [19] to infer constraints on the action space rather than finding

the optimal action sequence, significantly minimizing the computational cost of inference without

accuracy loss. More recently, a hierarchical distributed correspondence graph (HDCG) extension

[41] imposes rules to limit the search space of correspondences between natural language and

groundings, providing inference computation speeds permissible for online computation.

These models for grounding natural language commands provide a framework for development
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of natural language sensing. First steps towards a full natural language human sensor model are

discussed in chapter 4.
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Chapter 3

Likelihood Function Generation

The softmax function, also known as the normalized exponential or the logistic function, pro-

vides a smooth decomposition of the state space. We argue this function is key in the representation

of semantics for Bayesian data fusion. This chapter begins with a discussion some key properties

of the softmax function, particularly in the derivation of equiprobable log-odds hyperplanes that

uncover structure in the softmax model. In the second section, this hidden structure is exploited

to establish a technique capable of synthesizing softmax models using no or minimal training data.

Model synthesis techniques can then be used to compress information-dense multi-observation like-

lihoods for online fusion, as discussed in the final section.

3.1 Properties of the Softmax Function

Section 2.1.2 identified the key issue with generating softmax functions to represent semantic

information: parameter selection. We investigate the softmax function, (2.6), in greater detail to

determine properties that may be helpful in either constraining or fully specifying parameters for

a given softmax model.

3.1.1 Nonlinear Normalized Exponentials

We have so far been discussing the linear formulation of the softmax model, where we assume

a linear state representation. In general, it is possible to construct arbitrary normalized exponentials

using nonlinear transformations on state variables:
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(a) (b)

Figure 3.1: Example normalized exponential function with quadratic state variables.

P (Dk = i | Xk) =
ew

T
i φ(Xk)+bi∑m

j=1 e
wT

j φ(Xk)+bj
(3.1)

Where the basis function φ(Xk) performs a transformation on the state. For example, a

quadratic form, in which φ(Xk) = φ

([
x y

])
=

[
x y xy x2 y2

]
, is shown in Fig. 3.1. This

is useful when considering highly nonlinear state decompositions, as well as synthesizing softmax

models around nonlinear constraints. However, in many cases, it also leads to a greater number

of parameters to specify, since wi, φ(Xk) ∈ Rd. For simplicity, we will continue to use linear

exponential functions, φ(Xk) = Xk, for our softmax models, with the understanding that the

linearity is not a limiting factor in model generation, as a greater number of subclasses may be

introduced to approximate nonlinear features for MMS models.

Regardless of the dimensionality of the state, the softmax parameters Θi are comprised of

weights wi and biases bi for each class i. The bias term is a state-independent offset, whereas the

weights scale the influence of state variables. Alternative notations combine the bias term with the

other weight parameters, then augment the state variable such that X ′k =

[
XT
k 1

]T
. Our notation

maintains the separation of weights and bias to underscore the parallels between weights/biases

and the slope/offset representation for linear hyperplanes, as will be discussed in section 3.1.4.
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3.1.2 Parameter Relativity

We can also demonstrate the relativity of these softmax parameters - any class associated

with one set of parameters is dependent on the parameters of all other classes within the model.

This allows for modification of all model parameters while maintaining the same likelihood function:

P (Dk = i | Xk; Θ) =

(
ew

T
i Xk+bi∑m

j=1 e
wT

j Xk+bj

)(
ev

TXk+a

evTXk+a

)

=
e(wi+v)TXk+(bi+a)∑m
j=1 e

(wj+v)TXk+(bj+a)

=
e(w′i)

TXk+b′i∑m
j=1 e

(w′j)TXk+b′j

= P (Dk = i | Xk; Θ′)

(3.2)

where Θ′ = {{w′1, b′1}, {w′2, b′2}, . . . , {w′m, b′m}}, w′i = wi + v and b′i = bi + a. Thus, when

specifying parameters for a model with m classes, we only need to specify m − 1 parameter sets.

This is often useful as we can simply set one class’ parameters to zero and offset the remainder.

3.1.3 Parameter Transformations

The relativity of parameters allows us to perform transformations rotational and translational

on the softmax model as a whole. For instance, if we translate the state space by some β, we can

arrive at a translated state space X ′k = Xk + β, where β ∈ Rn. But, can we represent this

shift simply by adjusting our parameters, rather than redefining our state vector? If we examine

P (Dk = i | X ′k; Θ) in the translated state space, we see the following:

P (Dk = i | X ′k; Θ) =
ew

T
i (Xk+β)+bi∑m

j=1 e
wT

j (Xk+β)+bj

=
ew

T
i Xk+wT

i β+bi∑m
j=1 e

wT
j Xk+wT

j β+bj

=
ew

T
i Xk+b′i∑m

j=1 e
wT

j Xk+b′j

(3.3)

Where b′j = bj+wTj β for j = 1, 2, . . . ,m. This retains our original state and modifies only our
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biases. Similarly, we can apply a rotation to the translated state space, to get a fully transformed

softmax model:

X ′′k = R(θ)X ′k = R(θ)(Xk + β) (3.4)

Where R(θ) is some n-dimensional rotation matrix. Again, we can apply this transformation

to the parameters rather than the state:

P (Dk = i | X ′′k ; Θ) =
ew

T
i (R(θ)Xk+R(θ)β)+bi∑m

j=1 e
wT

j (R(θ)Xk+R(θ)β)+bj

=
ew

T
i R(θ)Xk+wT

i R(θ)β+bi∑m
j=1 e

wT
j (R(θ)Xk+R(θ)β)+bj

=
e(w′′i )TXk+b′′i∑m
j=1 e

(w′′j )TXk+b′′j

(3.5)

Where,

w′′j = R(θ)Twj

b′′j = wTj R(θ)β + bj

(3.6)

We can manipulate any softmax model by translation and rotation as necessary. This is

important when grounding semantics to physical objects with known positions. Many semantic

relations are either egocentric or exocentric – dependent on the observer’s viewpoint or the inertial

viewpoint. For instance, the egocentric to my right would require some base model of right and

left to be transformed to the current position and orientation of the observer, while the exocentric

north of the kitchen could be defined once and fixed.

3.1.3.1 Example

If we want to specify the location of a target, one option is to use the four intercardinal

directions (northeast, southeast, southwest and northwest). These map to a 2-dimensional state

space, Xk =

[
x y

]T
, and can be considered wither exocentrically or egocentrically. In this simple

problem, weights correspond to each quadrant of the Cartesian plane, thus:
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(a) Perspective view of origin-based exocentric model. (b) Top-down view of origin-based exocentric model.

(c) Perspective view of reference-based egocentric
model.

(d) Top-down view of reference-based egocentric model.

Figure 3.2: Softmax model of intercardinal directions undergroing transformation from global
frame to ego frame.

wSW =

−1

−1

 , bSW = 0

wNW =

−1

1

 , bNW = 0

wSE =

 1

−1

 , bSE = 0

wNE =

1

1

 , bNE = 0
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These weights correspond to the model shown in figs. 3.2a and 3.2b. All semantics are

currently with reference to the origin; however, we can specify them with relation to some arbitrary

translated and rotated point to provide egocentric measures.

Given a reference pose of p = (2,−3, π4 ) representing (x, y, θr) in (m, m, clockwise rad from

+y), we can find the egocentric parametrization by using β =

[
−x −y

]
and θ = θr with (3.6):

w′′SW =

cos (π4 ) − sin (π4 )

sin (π4 ) sin (π4 )


T −1

−1

 =

−√2

0



w′′NW =

cos (π4 ) − sin (π4 )

sin (π4 ) sin (π4 )


T −1

1

 =

 0

√
2



w′′SE =

cos (π4 ) − sin (π4 )

sin (π4 ) sin (π4 )


T  1

−1

 =

 0

−
√

2



w′′NE =

cos (π4 ) − sin (π4 )

sin (π4 ) sin (π4 )


T −1

1

 =

√2

0



b′′SW =

[
−1 −1

]cos (π4 ) − sin (π4 )

sin (π4 ) sin (π4 )


−2

3

 = 2
√

2

b′′NW =

[
−1 1

]cos (π4 ) − sin (π4 )

sin (π4 ) sin (π4 )


−2

3

 = 3
√

2

b′′SE =

[
1 −1

]cos (π4 ) − sin (π4 )

sin (π4 ) sin (π4 )


−2

3

 = −3
√

2

b′′NE =

[
−1 1

]cos (π4 ) − sin (π4 )

sin (π4 ) sin (π4 )


−2

3

 = −2
√

2

Using these parameters, we achieve the result in figs. 3.2c and 3.2d. – a translated and

rotated softmax model.
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3.1.4 Log-odds Hyperplanes

For any two classes, we can take the ratio of their probabilities to determine the odds of one

class with respect to the other:

L(i, j;Xk) =
P (D = i|Xk)

P (D = j|Xk)
=

ew
T
i Xk+bi∑m

c=1 e
wT
c Xk+bc

e
wT
j

Xk+bj∑m
c=1 e

wT
c Xk+bc

=
ew

T
i Xk+bi

ew
T
j Xk+bj

(3.7)

When L(i, j;Xk) = 1, the two classes have equal probability, so any Xk for which L(i, j;Xk) =

1 is part of the equiprobable level set of classes i and j. We can take the logarithm to get the log-odds

ratio:

log (L(i, j;Xk)) = (wTi Xk + bi)− (wTj Xk + bj) = (wi − wj)TXk + (bi − bj) (3.8)

When log (L(i, j;Xk)) = 0, the equiprobable level set takes the form of a linear hyperplane.

These log-odds hyperplanes are defined for all combinations of classes i, j if i 6= j, and are critical

in the synthesis of softmax models covered in section 3.2.

3.1.5 Softmax Model Regions

Given that any non-MMS softmax class is convex, finding the most likely labels over state

space partitions the space into convex regions, in which each region maps to a class that has greater

probability than any other class. This is shown in Fig. 3.3, where each region is represented by

a different color. Furthermore, any border between two dominant regions is necessarily a linear

hyperplane, as defined by (3.8). Note, however, that the log-odds hyperplanes between any two

classes can be defined (e.g. between far northeast and far southwest) – these hyperplanes do not

only bound dominant regions.

3.1.6 Binary Softmax Models

Observations of semantic language mapping to class labels in a softmax model are deemed

mutually exclusive events – this is the traditional categorical softmax model. This model definition
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(a) Softmax model of joint range and bearing labeled
classes.

(b) Dominant softmax class regions.

Figure 3.3: Projection of softmax likelihoods from (a) onto state space, shown in (b). Reprinted
from [24], c©2013 IEEE.

(a) Categorical speed model. (b) Binary softmax model for slow.

Figure 3.4: Conversion of a categorical speed model into a BSM.

is problematic when representing non-mutually exclusive semantics; for instance, near, next to,

beside and around are clearly not mutually exclusive spatial relations. The only semantic statement

which is affirmatively mutually exclusive with near would be not near. In general, this means that

semantics should be considered as binary mutually exclusive pairs, modeled through a BSMs, with
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only the semantic label and its negation as the two composing classes.

However, this increases the training data requirement for parameter learning (since we would

need sufficient training data for each class as well as its negation). As an approximation, it is

possible to simply take a categorical model and construct a binary MMS model containing that

class and a summation over all other classes as the other class. This maintains the assumption

of mutual exclusivity between all semantic class labels, but allows for an approximate definition

of negative terms for each possible semantic label for Dk. An example using 1-dimensional speed

state space is shown in Fig. 3.4.

Given the mutual exclusion assumption between labels, it becomes key that the categorical

softmax models be defined with a set of archetypal terms (such as next to, near, and far for range

descriptions). In other words, we define categorical softmax models without synonymous labels.

This greatly limits the potential semantic labels that can be used, but also limits the amount of

training required, as models need not be trained on the entire set of possible semantically meaningful

labels (nominally, prepositional phrases in English). In learning categorical softmax models, as well

as their negations through the BSM representation, we naturally limit semantic language to a pre-

defined dictionary of learned archetypal labels; section 4.1 provides an approach that allows for

arbitrary semantic labels to be used.

3.2 Constraint-based Softmax Synthesis

With these properties of the softmax function defined, we can now begin to consider the

problem of specifying softmax parameters with little or no training data. We note that, since

human sensor statements focus on describing grounded language, we may consider other sources

of knowledge as a method of generating softmax models; for instance, if we know the shape of

a desk, we may be able to use its geometry to generate a softmax model without requiring any

training. Building on the log-odds hyperplane and dominant region properties discussed in section

3.1, we consider the converse of the result proved in [42]: can a Θ always be found to embed any set

of probabilistic polytopes within a softmax model such that Xk is completely partitioned? What
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follows is a description of this ‘constraint-based softmax synthesis problem’, based on previous work

[43].

We define the constraint-based synthesis problem as the following: given a set of m semantic

(sub)class labels with 1-to-1 correspondence to m convex probabilistic polytopes in a complete

mutually exclusive convex decomposition of Xk, find the parameters Θ that produce log-odds

boundaries for the desired polytopes. Unlike purely learning-based methods, such as shown in

section 2.1.2, the synthesis problem here relies only on a given polytope geometry specification

to identify Θ (which may not be unique). This a priori geometric polytope information is often

available in the context of semantic spatial sensing [44], and can be used to define human sensor

models. Suppose we are given B =
{
nTji, cji

}
where

nTjiXk + cji = 0 (3.9)

and where nji ∈ Rn and cji ∈ R for i, j ∈ {1, ...,m} where i 6= j. Let B define a set of surface

normal parameters describing the log-odds hyperplanes for the faces of m convex polytopes, which

together form a complete mutually exclusive convex decomposition of Xk. Since the state space may

be unbounded, assume the polytopes may be unbounded as well (e.g. the non-negative orthant).

Assume these convex polytopes correspond to desired dominant regions for class (or subclass) labels

i, j ∈ {1, ...,m}, such that each face of the class i polytope corresponds to the equiprobability level

set with its neighbouring class j (i.e. the faces correspond to the log-odds hyperplanes defined by

(3.8)). B here defines only the desired boundaries for i and j whose dominant region polytopes are

neighbors in Xk. We denote the set of all neighboring class label pairs (i, j) that have boundaries

specified by B as SB. The constraint-based softmax synthesis problem is then to find softmax

parameters Θ = {wc, bc}mc=1 such that the log-odds boundaries for i, j ∈ {1, ...,m} correspond

exactly to the specified boundaries in B. Equating the left-hand side of (3.9) and (3.8) when

log (L(i, j;Xk)) = 0,
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Figure 3.5: Example geometry specification of a regular triangle.

∆wTjiXk + ∆bji = nTjiXk + cji = 0

⇒ wj − wi = nji, bj − bi = cji ∀(i, j) ∈ SB,
(3.10)

Where ∆wji = wj − wi and ∆bji = bj − bi. If SB defines NS boundary pairs, then (3.10)

leads to a system of NS(n+ 1) linear equations that must be satisfied by Θ.

We define the stacked parameter vector as,

~θ = [wT1 , b1, w
T
2 , b2, ..., w

T
m, bm]T

and the stacked vector of desired polytope boundary surface normal parameters as,

~β = [nTv(1), cv(1), n
T
v(2), cv(2), ..., n

T
v(NS), cv(NS)]

T

where v(t) denotes the tth pair of (i, j) class labels in SB for t ∈ {1, ..., NS}. Then, the

required equations can be written as M~θ = ~β, where each row of M ∈ RNS(n+1)×m(n+1) performs

the appropriate differencing operations on ~θ ∈ Rm(n+1) to obtain ~β ∈ RNS(n+1).

To better understand the relationship between geometry and parameters, take the triangle

polytope specification B shown in Fig. 3.5. The triangle decomposes the state space into two regions

(inside and outside the triangle), which can be decomposed into four convex regions: region 0 at
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the interior of the polytope; and regions 1 through 3 defined on one side by each polytope face

and unbounded elsewhere. The magnitude of the normal of each face can be used to determine the

boundaries between unconstrained regions (e.g. regions 2 and 3). Our equation M~θ = ~β mapping

the known polytope normals to unknown weights becomes:



c1,0

nT1,0

c2,0

nT2,0

c3,0

nT3,0


=



−1 0 1 0 0 0 0 0

0 −1 0 1 0 0 0 0

−1 0 0 0 1 0 0 0

0 −1 0 0 0 1 0 0

−1 0 0 0 0 0 1 0

0 −1 0 0 0 0 0 1





b0

wT0

b1

wT1

b2

wT2

b3

wT3



(3.11)

We have 9 equations and 12 unknowns, given that n,w ∈ R2. However, recall the relativity

of softmax parameters as discussed in section 3.1.2: we can simply set b0 = 0 and w0 =

[
0 0

]T
,

then define a set of weights relative to the arbitrarily determined interior class. This allows us to

easily specify weights and biases as wi = ni,0 and bi = ci,0 for i = 1, 2, . . . ,m− 1.

In general, given (B, SB) → (β,M), the existence and uniqueness of solutions to constraint-

based softmax synthesis follows from the Rouché-Capelli theorem. If A = [M, ~β], then the following

solutions ~θ are possible:

(1) rank(A) = rank(M) = m(n+ 1)⇔ unique solution

(2) rank(A) = rank(M) < m(n+ 1)⇔ infinitely many solutions

(3) rank(A) 6= rank(M) ⇔ no exact solutions

Hence, at least one solution ~θ exists for the softmax synthesis problem iff ~β lies in the

span of the columns of M , whose only entries are 1,0, and −1 (cases 1 and 2). Otherwise, For

inconsistent specifications (case 3), ~θ does not have enough degrees of freedom to produce the
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desired polytope boundaries for m classes, meaning that a greater number of classes must be created

for a consistent model. Certain log-odds boundary specifications between m convex polytopes are

thus not realizable using only m softmax parameters. In fact, for solutions to exist, the following

‘loop summation constraint’ must hold (analagous to Kirchoff’s votage law),

∆wjy1 + ∆wy1y2 + ∆wy2y3 + ...+ ∆wyh,i + ∆wij = 0

⇒ njy1 + ny1y2 + ny2y3 + ...+ nyh,i + nij = 0 (3.12)

where (3.12) follows from (3.10), and the indices yr for r = 1, ..., h and 2 < h ≤ m denote any

subset of class indices other than i and j (similarly for ∆bji and cji). Note that the ∆w constraints

are automatically satisfied for any given set of softmax model parameters. However, if the desired

polytope boundaries in B do not satisfy (3.12) for any subset of class labels {i, j, y1, ..., yh}, then

no ~θ exists such that M~θ = ~β using only m softmax classes.

3.2.1 Example

Fig. 3.6 shows an irregular convex polygon for defining inside and outside spatial likelihood

model regions. Since the outside region is non-convex, this requires an MMS model featuring at

least 5 softmax subclasses to make up the outside class. Each outside subclass corresponds to one

polygon face: top left, top right, bottom left, bottom right, and bottom. A single subclass makes up

the inside class. Fig. 2(a) shows the desired normals nji for each face between the outside and

inside classes polytopes (black arrows), indicating that the likelihood model should force the inside

(sub)class to become less probable at the perimeter, but dominate the interior.

This specification of Ns = 5 polytope faces for m = 6 subclasses with dimensionality n = 2

leads to a system of NS(n + 1) = 15 linear equations in m(n + 1) = 18 parameters. As with the

previous example, to find a particular realization satisfying this specification, we can arbitrarily

assume wi = 0 and bi = 0 for i =inside, leaving 15 parameters in 15 difference equations. Thus,

M = [M̃ ; 0], where M̃ = I (identity), and so ~θ = ~β.
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Sample polygon region (with edge normals)

(a) Polytope specification. (b) Resulting subclass regions, with boundaries in de-
sired locations from (a)

(c) Subclass probability surfaces with unit normals nji. (d) Desired normals magnified by 80.

(e) Non-convex MMS likelihood for outside.

Figure 3.6: Construction of MMS likelihood function for outside a given polytope. Note that
internal boundaries between outside subclasses vanish. Reprinted from [43], c©2016 IEEE.
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3.3 Multi-observation Likelihood Compression

The GM fusion approximation assumes that P (Dk = i|Xk) captures all information contained

within a semantic human observation Dk. However, Dk could contain mixed information about

different states within Xk (e.g. target position and heading). As it is difficult to capture all possible

semantic data combinations within a single MMS model, P (Dk = i|Xk) could be decomposed

into atomic likelihoods that model relevant semantic information after Dk is parsed by a natural

language processing front-end (as will be discussed in chapter 4). For instance, if Da
k = i and

Db
k = j correspond to “target near building” and “target moving quickly away from building”,

then the likelihood for the joint observation Dk = ([Da
k = i] ∧ [Db

k = j]) is the product of the

corresponding likelihoods (assuming both are conditionally independent given Xk), P (Dk|Xk) =

P (Da
k|Xk)P (Db

k|Xk). D
a
k and Db

k could also represent observations from different human sensors at

time k.

With No such observations Do
k, o ∈ {1, ..., No}, each Do

k could be processed sequentially

via repeated application of the GM approximation (2.5). However, this becomes expensive for a

single time step k, since GM updating and compression must be executed for each Do
k update. The

accuracy of these steps also depends on the order in which each Do
k is processed. We thus seek to

extend the GM fusion method of [24] to handle the general case of ‘batch’ semantic measurement

updates,

p(Xk|D1:No
k ) ∝ p(Xk)

No∏
i=1

P (Do
k = io|Xk). (3.13)

Ideally, if a single softmax/MMS model L(D1:No
k |Xk) captured all information from the RHS

product, then GM fusion and merging methods only need to be applied once at step k. This

section describes several ways to accomplish this, using the likelihood synthesis approach described

previously.

Information-dense semantic may be combined into a single batch likelihood L(D1:No
k |Xk) as

long as no dynamics prediction step is required between any two component measurements (as
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would be the case in the example statement, “The target left the house, turned right, and walked

down the street.”). We first describe compression strategies for the case where each P (Do
k = io|Xk)

is described by a softmax model with mo class labels. We then generalize these compression

strategies to MMS component likelihoods. In both cases, the key idea is to extract the relevant

boundaries for probabilistic polytopes that correspond to the intersection of dominant regions for

all observed class labels. Once these boundaries are identified, they can be used to synthesize more

sparsely parameterized semantic likelihoods, which lead to more computationally efficient Bayes

fusion updates.

3.3.1 Compression Methods for Multiple Observations

We first examine how to exactly produce one softmax model from the product of multiple

softmax likelihoods. If we assume No conditionally independent measurements, the combined

likelihood P (D1:No
k |Xk) is,

No∏
i=1

P (Do
k = io|Xk) =

ew
T
IXk+bI

No∏
l=1

ml∑
cl=1

ew
T
cl
Xk+bcl

(3.14)

where I = {i1, i2, . . . , iNo} is the set of No class observations taken from the No softmax

models, where io ∈ {1, ...,mo} and mo is the number of classes for the oth softmax model. Assume

w.l.o.g. that the class labels are ordered within each softmax model. The product model parameters

are defined as wI =
∑No

o=1wio and bI =
∑No

o=1 bio . In general, each measurement io ∈ I comes from

a different softmax model.

Now, (3.14) can be exactly expressed as a softmax function,

ew
T
IXk+bI

No∏
l=1

ml∑
cl=1

ew
T
cl
Xk+bcl

=
ew

T
I x+bI

m̄∑
t=1

ew
T
t Xk+bt

= L(D1:No
k |Xk) (3.15)

Thus, the product of No conditionally independent softmax likelihoods can be exactly de-

scribed as a single softmax likelihood over m1×m2×· · ·×mn = m̄ ‘product classes’, which appear
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in the denominator. The wt terms cover all m̄ combinations for the sum of the weights from the

product of No softmax models (likewise for the bt terms). Equation (3.15) is referred to as the

product expansion softmax model for No semantic observations. Figure 3.7c shows an example of

a product model for two joint semantic observations (each a shifted/scaled version of the softmax

model template shown in Fig. 3.7a). When fused via VBIS with the GM prior in Fig. 3.7b, the

posterior in Fig. 3.7g is obtained.

Note that m̄ increases exponentially with No, making (3.15) computationally expensive in

general. However, as with GM compression algorithms, this provides motivation to investigate

methods for approximating (3.15) via parameter compression techniques, to balance tradeoffs be-

tween fusion accuracy and online computational efficiency. That is, we seek

L(D1:No
k |Xk) ≈ P (D̃k = i∗|Xk) =

ew̃
T
i∗Xk+b̃i∗∑m∗

c=1 e
w̃T

c Xk+b̃c
(3.16)

where m∗ � m̄, and w̃c, b̃c are based on some approximation technique. The following geo-

metric and neighbourhood compression approximations are based on the constraint-based softmax

synthesis approach presented in section 3.2, and trade speed for accuracy to enable online GM

fusion calculations with batch semantic measurements.

3.3.1.1 Geometric Compression

Geometric compression attempts to extract the relevant information in L(D1:No
k |Xk) accord-

ing to minimal set of log-odds boundaries needed to specify the dominant region polytope of the

product class that appears in the numerator of (3.15). This is equivalent to finding the intersection

of the dominant region polytopes for the No semantic observations in I (where each dominant

region can be unbounded). This implicitly assumes that the set of measurements in I is consistent,

i.e. that no one io ∈ I contradicts any of the others; probabilistic data association techniques can

be used to handle the possible ‘false alarm’ observations, e.g. see [24]. If any of the polytopes

are non-intersecting (i.e. measurements are inconsistent, such as “Target is in front of the house,”
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(a) Model template. (b) Gaussian mixture prior.

(c) Product model. (d) Neighbourhood model 1. (e) Neighbourhood model 2. (f) Geometric model.

(g) Product posterior. (h) Neighbourhood 1
posterior.

(i) Neighbourhood 2
posterior.

(j) Geometric posterior.

Figure 3.7: Comparison of softmax likelihood compression methods for two measurements: right
of a small box and inside a large box, based on models in (a). The joint measurement class is
shown in dark grey for (c)-(f). Posteriors (g)-(j) arise from fusion of the joint measurement class
with the GM prior (b) via VBIS. Reprinted from [43], c©2016 IEEE.
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and, simultaneously, “Target is behind the house”) geometric synthesis fails to product a softmax

model. We thus identify from (3.15) the relevant set of denominator parameters w̃c and b̃c defining

the log-odds boundaries of the dominant region polytope for the product class i∗ in (3.16).

Consider first how the dominant region for any class io ∈ I can be determined from the

set of all possible log-odds boundaries that could be formed with respect to all other classes

jo ∈ {1, ...,mo} within a single softmax model. By changing the rightmost equality in (3.8) to an

inequality, we define the dominant region of io = i as

Si = {Xk ∈ Rn|Gi,jXk ≤ hi,j , ∀j ∈ mo, j 6= i} (3.17)

where Gi,j = wj −wi and hi,j = bi− bj , ∀j ∈ mo, j 6= i. We may more compactly express this

as GiXk � hi. The number of constraints in (3.17) is generally greater than the number needed to

define Si; that is, some constraints generated by eq. 3.8 may not restrict Si. Our goal is to find the

irredundant constraints G′iXk � h′i to define S ′i, the same feasible region with only the necessary

constraints, and use the irredundant constraints to create an approximate softmax likelihood to

the original via direct synthesis. Several techniques from the optimization literature may be used

to prune redundant linear constraints; here, we use the linear programming (LP) method of Caron

et al. [45] to prune log-odds-based inequality constraints.

Let Sji denote the feasible set Si with the jth constraint removed. If Si = Sji , then Gi,jx ≤ hi,j

is a redundant constraint. By iterating through all constraints, the redundant ones are identified:

for each constraint, construct the LP,

max zi,j = Gi,jx, s.t. G
(j)
i x � h(j)

i (3.18)

where G
(j)
i and h

(j)
i are the Gi and hi matrices with row j removed, and zi,j is the optimal

value of the maximization problem. If zi,j ≤ hi,j , the jth constraint is redundant; otherwise the

jth constraint is irredundant. Once we have found the irredundant constraints G′ix � h′i to define

S ′i, we can synthesize our approximate softmax model using the structured algebraic synthesis
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approach outlined in section 3.2, where we transform the halfspace inequality constraints S ′i into

specifications B for the dominant region polytope face of the observed class i. For an l-sided convex

polytope (bounded or unbounded), a minimum of l + 1 classes are required to specify a softmax

model with all critical class boundaries equivalent to the l polytope bounds. In general, we can set

wi = 0 and bi = 0 to greatly simplify specification of the reduced softmax likelihood (cf. example

from section 3.2). Note that this approach allows us to retain only the information necessary to

reconstruct the dominant region polytope for the observed class i, but no other classes. Thus, the

weights and biases for our newly ‘compressed’ softmax model are

W̃ = [0T , w̃T2 , ..., w̃
T
l + 1]T = [0T , G′T ]T , (3.19)

B̃ = [0, b̃2, ..., bl+1]T = [0,−hT ]. (3.20)

To prune redundant constraints from No observations, form GI as a stacked matrix of Gio

and hI as a stacked vector of hio for o ∈ {1, ..., No} to obtain the GIXk � hI . Using the same

reduction technique as before, define G′IXk � h′I . This reduced set of constraints allows us to

synthesize the compressed softmax model

P (D̃ = i∗|Xk) =
1∑

c∈M
ew

T
c Xk+bc

(3.21)

where M contains all the indices for the parameters specified by W̃ and B̃. Note that the

numerator is simply 1 since the parameters of the new compressed product observation class i∗

are set to 0. As shown in Fig. 3.7f, the likelihood for i∗ in (3.21) will have the same dominant

region boundaries as the corresponding joint observation class obtained via the product synthesis

method. The likelihood surface for (3.21) will differ from the product likelihood (3.15). In this case,

since we have removed additional information provided by all other classes in the product model,

the geometric compression likelihood will be more conservative and the probability surfaces will

be less steep while meeting log-odds equiprobability constraints. However, as Fig. 3.7j shows, such
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errors are often acceptable, given the decrease in softmax compression time, Tc, and GM fusion

time, Tf ; in the example case, Tc + Tf = 0.085s using the geometric model vs. Tc + Tf = 0.428s

using the exact product model. This results in an (often negligible) loss in GM fusion accuracy as

measured by the Kullback-Leibler divergence (KLD) of DKL = 0.027 nats between the two results.

Timing and accuracy results for all compression techniques for softmax and MMS joint observation

likelihoods are summarized in Table 3.1.

3.3.1.2 Neighbourhood Compression

Neighbourhood compression extends geometric compression by retaining additional informa-

tion about the dominant region polytopes for the neighbouring classes of each observed class io ∈ I.

The main idea is that parameters for unobserved classes whose dominant regions are far from those

of the observed classes io ∈ I will not contribute significantly to (3.15), and thus can be ignored

without major information loss. The neighbours of a given class in any softmax model can be

determined offline via constraint reduction. For class i, we identify the irredundant constraints

G′ix � h′i as above. Any class j whose weights were kept to form G′ is considered to be a neighbour

of class i. The neighbours of class i, Yi, are recorded offline, before any observations are received.

When fusing multiple observations online, we perform product expansion, as in (3.15), on the mea-

surements I but use only the weight/bias parameters of the measurements and their neighbours in

the denominator, excluding all other parameters.

P (D̃ = i∗|Xk) =

No∏
o=1

P̃Yo(Do
k = io|Xk) =

ew
T
IXk+bI

No∏
o=1

∑
c∈Yo

ewT
c Xk+bc

where Yo contains the indices only of the associated neighbours of io ∈ I (including io itself).

This new compressed model is still exponential in No, although with a reduced number of classes per

component model. To further reduce the complexity, neighbourhood compression can be performed

again, this time online, producing the a second-iteration neighbourhood model which contains a

minimal representation of the product likelihood for the jointly observed classes. An example of
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the results for one and two iterations of neighbourhood compression is shown in Fig. 3.7d and 3.7e,

with posteriors in Figs. 3.7h and 3.7i; a more conservative posterior is obtained, but computation

time decreases from the product method and accuracy is slightly greater than for the geometric

method.

3.3.2 MMS Product Compression

The aforementioned compression techniques directly extended to products of MMS likelihood

functions, with some modifications. As in (3.15), the exact product expansion is

P (D1:No
k |Xk) =

∑
r∈σ(I)

ew
T
r Xk+br

s̄∑
c=1

ewT
c Xk+bc

= L(D1:No
k |Xk) (3.22)

where s1×s2×· · ·×sNo = s̄ is the total number of product subclasses from all MMS models,

so is the number of subclasses for o ∈ {1, ..., No} and σ(I) is the set of all
∏No
o=1 qio = q̄ product

subclasses formed from the product of the No observed classes in I. The compressed softmax ap-

proximation from (3.16) could be extended to MMS in one of two ways. First, we could find one set

of parameters to represent the dominant regions for the product subclass polytopes within a single

latent softmax model corresponding to an MMS model closely approximating (3.22). However, this

‘holistic’ compression approach leads to a possible complications for geometric or neighbourhood

compression, since these may generate convex decompositions of Xk that cannot be embedded with

the desired number of subclass parameters (i.e. case 3 from section 3.2). Alternatively, (3.22) could

be approximated by a sum of q̄ different softmax models, each representing the dominant region

polytope for a different combination of the q̄ subclass product terms,

L(D1:No
k |Xk) ≈

q̄∑
z=1

e
w̃T

i∗,zXk+b̃i∗,z∑mz
cz=1 w̃

T
czXk + b̃cz

, (3.23)

where each softmax summand z models a different portion (i.e. product subclass) of the

(non-convex) probabilistic polytope for the joint product class label i∗ of all No class observations.
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(a) Product model. (b) Neighbourhood model. (c) Geometric models.

(d) Product posterior. (e) Neighbourhood posterior. (f) Geometric posterior.

Figure 3.8: MMS likelihood compressions for three measurements: near a small box centered at
the origin, near a medium box offset from the origin, and inside a large box centered at the origin,
shown by the striped area in (a) and (b), the latter containing an equal number of dominant classes
but significantly fewer hidden subclasses. All five component models generated from geometric
compression are shown in (c). Posteriors (d) through (f) are generated w.r.t the prior from Fig.
3.7b. Reprinted from [43], c©2016 IEEE.
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Table 3.1: Accuracy and computation time of softmax and MMS compression method examples
(30 trial avg.)

Product Nbhd. 1 Nbhd. 2 Geometric

Softmax Example

Compression time Tc (s) 0.001 0.045 0.029 0.012

Fusion time Tf (s) 0.427 0.267 0.132 0.073

Total time Tc + Tf (s) 0.428 0.312 0.161 0.085

m∗ 25 20 9 7

KLD w.r.t Product (nats) - 0.006 0.021 0.027

MMS Example

Compression time Tc (s) 0.0520 0.321 - 0.112

Fusion time Tf (s) 1250 619 - 0.314

Total time Tc + Tf (s) 1250 620 - 0.426

m∗ 729 405 - 271

KLD w.r.t Product (nats) - 0.01 - 0.24

Although less accurate, this latter ‘summation’ approach is adopted here since it is more com-

putationally efficient (parallelizable) and generally leads to relatively small errors for GM fusion

in practice (see section 3.3.3). With this in mind, the geometric and neighborhood compression

techniques can be straightforwardly adapted with extra bookkeeping to produce w̃z, b̃z for all q̄ sum-

mands. Future work will explore techniques for automatically generating subclasses to efficiently

implement the former holistic approach.

Figure 3.8 shows compression results for a product of three MMS models that are shifted/s-

caled from a base MMS model describing inside, near and outside of the gray rectangular region in

Fig. 3.7a. The imprecise approximation from (3.23) leads to noticeably more conservative fusion re-

sults for the geometric approximation. However, there is a great speedup for geometric compression

(Tc+Tf = 0.426s) over the exact product and neighbourhood methods (20 minutes and 10 minutes

for GM fusion, respectively), for a fairly small and acceptable sacrifice in fusion accuracy relative

to the product fusion result (DKL = 0.24 nats for VBIS GM fusion via geometric compression vs.

DKL = 0.01 nats with neighborhood).
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3.3.3 Fusion Strategies

The goal of likelihood compression is to maintain accuracy while minimizing computation for

multiple semantic data observations. We perform multiple data aggregation methods on our dataset

to compare these two objectives: sequential recursive fusion uses one uncompressed measurement

per update step; windowed batch fusion uses ω + 1 compressed measurements per update step.

Varying ω shows differences in computational load and accuracy; since one human operator provides

non-composite measurements, our approach is to compress and fuse ω + 1 measurements in batch.

We use an initial GM prior with mp = 6 and limit to 20 posterior mixands using Runnalls’ method

[39].

Data was collected from a full static target search experiment described in section 5.1, in

which the human observer had prior knowledge of the environment but no knowledge of the target

locations. This resulted in approximately 20 human sensor measurements, as well as a full history

of the robot teammate’s trajectory. At each timestep, the robot teammate collects hard sensor

data ζk as visual target detection information; this data is fused at each timestep via an efficient

VBIS GM fusion approach.

Figure 3.9a demonstrates the accuracy results (in terms of KLD with respect to a grid-

based posterior) of geometric MMS with VBIS GM fusion using different data aggregation methods

(ignoring hard sensor data to assess the effects of only using the human sensor updates). In

contrast to results shown in figure 3.9b (in which the hard sensor data fused at each of the 1300

simulation timesteps), the human-only data requires significantly fewer fusion steps, and thus fewer

posterior approximations via GM merging. This leads to larger KLDs from the true grid-based

posterior when the camera is activated. Furthermore, while all windowed fusion methods provided

a greater accuracy than sequential recursive GM fusion after 8 measurements (likely also due to

fewer posterior approximations), the computation time increases. Note that the GM merging

algorithm causes sequential recursive fusion to start discarding more information than the batch

methods. On average, recursive fusion required less than one second per update, as did ω = 1,

1 Spread across 5 complete softmax models.
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(a) (b)

Figure 3.9: Using geometric MMS compression only, we show fusion KLDs with respect to a
grid-based truth model at the time of each human sensor measurement.

whereas ω = 2 required 2-5 seconds per update, and ω = 5 requires minutes per update.

Slow fusion times for larger values of ω point to the need for exploitation of the parallelizability

of both VBIS fusion steps as well the geometric compression method. Additionally, the multiple

fusion steps required by the summation geometric MMS fusion is inefficient in both computation

time and accuracy; a technique must be developed to generate a single non-convex geometry for

synthesis of an MMS model from geometric compression. This problem is non-trivial, but closely

related to convex shape decomposition techniques currently being researched in computer vision

and computer graphics domains [46,47].
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Chapter 4

Communicating Semantic Data

We have focused so far on modeling semantically uncertain statements to be fused within a

Bayesian framework, with the primary purpose of providing an autonomous system with a better

understanding of its environment. In other words, we treat the human as an information source,

akin to one of the robot’s on-board sensors, that can be used to update a robot’s belief. These

interactions are often decomposed [48] into the following four communication patterns:

• human-push, where a human voluntarily offers information to the robot;

• human-pull, where a human queries the robot for information;

• robot-push, where a robot voluntarily offers information to the human;

• robot-pull, where a robot queries the human for information.

The human-directed communication patterns (human-pull and robot-push) are important

aspects to be considered for human-robot teaming, and new areas of research are quickly forming

to develop human-directed information passing strategies. For instance, developing a human’s trust

in an autonomous system through its expression of self-confidence [49]. However, since our goal

is to improve the robot’s understanding of the world, human-directed communication patterns are

less relevant to the discussion.

The robot-pull pattern is characterized by a request for information by the robot. Previous

work by Kaupp [48] established the value of information (VOI) metric as a method of computing
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Figure 4.1: Fixed dictionary communication method.

the expected information value of a given query, which could be compared a cost metric (e.g. the

expected increase in the human’s cognitive workload [5]) to decide whether the query is of sufficient

importance to be asked. Lore et al. [50] examine deep learning techniques for non-myopic VOI

querying, which determines the VOI for query sequences over extended time spans rather than a

myopic approach of assessing the VOI for only the current time step. Though non-myopic VOI is

of particular interest for queries regarding dynamical systems, an in-depth consideration of (non-

myopic) VOI is beyond the scope of this work, as we focus on the human-push communication

paradigm.

In human-push, a human volunteers information; we focus on volunteering semantic state

information embedded within natural language. Translation of language to semantic information

requires that the language be grounded ; that is, language needs be imparted meaning to relate to

physical or abstract elements in the environment [51]. In the phrase, “The red robot is left of the

green fern,” we see three signifiers that must be assigned meaning: “The red robot” is a target

object that must be uniquely identified among all physical objects; “is left of” is a spatial relation

between two physical objects; and “the green fern” is a reference object in relation to which the

location of the target object can be found. The semantic uncertainty in the phrase is captured by

the spatial relation, while knowledge uncertainty and lexical uncertainty may be found in all three

signifiers.
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As a first step to communicating semantic information, we can develop a template-based

communication method that eliminates significant amounts of uncertainty while limiting richness

of semantic statements (as used by Ahmed [24]). The discussion of BSMs introduced the concept

of archetypal semantic labels used to define dominant regions in softmax models; restricting spatial

relations to these archetypes eliminates all lexical uncertainty, and results in a fixed dictionary of

possible semantic labels. Similarly, if all targets and reference objects are limited to a set of unique

identifiers for all physical objects, we reduce data-association based knowledge uncertainty and

eliminate lexical uncertainty. An example of this direct selection approach is shown in Fig. 4.1,

where:

• the targets in column 2 selects one or more belief maps for Bayesian inference;

• the positivities in column 3 selects one class in a BSM;

• the spatial relations in column 4 selects one complete BSM;

• the reference areas in column 5 selects geometries which can be used for on-the-fly synthesis

of BSM models.

Note that these four fixed dictionary categories represent only a subset of semantics that can

be modeled. In a dynamic search, for instance, we can describe movement type, such as moving

quickly or stopped which map to velocity states rather than the position states informed by spatial

relation statements.

Direct selection provides a rigid, structured framework for communicating semantic informa-

tion with minimal uncertainty. But, selection of items from a list may require a significant time

expenditure (delaying time-sensitive information), is unscalable (with possible groundings easily

reaching into the hundreds for complex environments), and constrains human language to only

archetypal labels.

In the following sections, we discuss one approach to solve these problems1 : a human-

1 See [50] for greater detail of a robot-pull, question-based solution in which the robot teammate generates a series
of questions based on a fixed semantic dictionary, ranked by VOI.
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(a) Direct selection model.

(b) Natural language model.

Figure 4.2: Graphical models representing the relationships between key variables in the two
problem forms. A greyed circle denotes an observed variable, whereas a white circle denotes an
unobserved variable.

push, chat-based interface that takes unstructured natural language and relates each utterance to

one or more pre-defined human sensor statements. The first section of this chapter introduces the

problem formally and defines the terms required for Bayesian inference. The second section provides

a scenario-specific natural language pipeline approach to compute the probabilities required for

Bayesian inference. The final section provides preliminary results for the scenario-specific pipeline

within the context of a target-search problem.

4.1 State Estimation with Natural Language Inputs

The direct selection approach is a bottom-up strategy for capturing semantic information:

we generate semantically meaningful likelihood functions, then constrain the shared human-robot

language set to a set of labels that uniquely specify these models. Instead, consider a top-down

strategy, the natural language approach: allow humans to provide semantic information in the

form of unstructured natural language utterances, and attempt to relate the input utterance to

a pre-defined set of semantically meaningful likelihood functions. While this introduces lexical

and knowledge uncertainties, it also provides a more convenient, scalable and rich communication

interface.

When selecting archetypal semantic labels, the human exactly specifies the BSM likelihood
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function p(Dk | Xk) in the general Bayesian inference problem (2.4) – that is, Dk is an observed

variable. In contrast, Dk becomes a latent unobserved variable in the natural language approach,

but some utterance Ok which relates to a template sensor statement Dk is now observed2 . Fig 4.2

gives a comparison of these two problems as graphical models used for Bayesian inference.

The key consideration is the mapping between Ok and Dk. The general, any utterance Ok

may relate to multiple semantic observations, DNo
k . For example, the unstructured natural language

utterance, “The blue robot is in the kitchen, heading to the library,” could be represented by the

statements, “I know Roy is in the kitchen” and “I know Roy is moving towards the library,” each of

which are mapped to softmax classes. As discussed previously in section 3.3, it is possible compress

multi-observation likelihoods into a single fusion update step. What has not been discussed is how

to identify multiple template statements from one unstructured utterance. Section 4.2.3 provides

a solution to this problem.

Formally, the Bayesian inference problem from (2.4) is now:

p(Xk | Ok) =

∑
D1:M

K
p(D1:M

k , Ok, Xk)

p(Ok)

=
p(Xk)

p(Ok)

M∑
i=1

mi∑
j=1

P (Ok | Di
k = j,Xk)P (Di

k = j | Xk)

=
p(Xk)

p(Ok)

M∑
i=1

mi∑
j=1

P (Ok | Di
k = j)P (Di

k = j | Xk)

= p(Xk)

M∑
i=1

mi∑
j=1

P (Di
k = j | Ok)P (Di

k = j | Xk)

P (Dk)

(4.1)

Where M is the number of observation likelihood functions defined in the direct selection

approach (i.e. all possible template statements to which an utterance may be mapped). Line 3 of

(4.1) is arrived at through assertion of the conditional independence of Ok and Xk given Di
k – that

is, knowledge of the state gives no information about the utterance, if we already know the template

semantic statement that describes the state. We also note the separation of semantic uncertainty, as

2 This is a simplification: p(Dk = i | Xk; Θ) may simply represent a single BSM, where i selects either binary
option, from a bank of BSMs, each with a different parameterization Θ. To simplify discussion, we assume that i
selects both the softmax model as well as the softmax class.
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captured by P (Di
k = j | Xk), and lexical uncertainty, as captured by P (Di

k = j | Ok), the template

statement observation likelihood. Given previous discussion in capturing semantic uncertainty

from chapters 2 and 3, the only term that is not easily attainable in (4.1) is P (Di
k = j | Ok). All

other terms in (4.1) have been accounted for, whether through likelihood synthesis, VBIS fusion or

multi-observation likelihood compression. Our focus then shifts from a sensor modeling problem

to a linguistic grounding problem.

This problem bears strong resemblance to the grounding problem for natural language com-

manding [15,17,19,41]. Our objective is to relate elements of natural language input to pre-defined

archetypal semantic labels which are grounded to pre-determined meanings (in a sense, ground-

ing the unstructured language to the structured language in order to complete the link between

unstructured language and meaningful semantic information).

In parallel with these approaches to natural language commanding problems, we will focus

on a parameter-learning technique to capture P (Di
k = j | Ok), requiring generation of scenario-

specific training data. While many off-the-shelf NLP tools provide mechanisms to tokenize, label

and compare signifiers, the probabilities required at each step are not necessarily well-defined for

our purposes. Thus, while we employ some off-the-shelf tools (e.g. word2vec), general-purpose

tools are often lacking for our specific problem formulations, and we require scenario-specific tools

to ensure both the proper probabilistic outputs, but also to restrict the problem in scope. This will

be discussed further in section 4.2 for each component of the comparison process.

In contrast to the natural language commanding problem, our formulation allow us to be fully

Bayesian about the method in which we fuse the sensory information given by the human: some

probability exists that each utterance maps to each template sensor statement, and we consider

all possible template statements, weighted by the likelihood that those statements relate to the

utterance. This is a fundamentally different approach from command information given by humans

to a robot; one expects that a command interface would select the most likely command rather than

a weighted sum of commands (a robot performing a mixture of “go right” and “go left” would often

be inadvisable). In the same sense of capturing and maintaining semantic uncertainty, rather than
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simply fusing information concerning the most likely observed state, we can capture and maintain

lexical uncertainty as a useful property of the utterance; for example, if our archetypal labels for

range measurements limited to near and far, it becomes possible to take a mixture of the two labels

to produce a unique softmax function for in between3 .

The definition of P (Di
k = j | Ok) is a non-trivial problem, as we condition on the entirety

of unstructured language. One approach may limit Ok to merely a subset of language (i.e. only

defining this probability for utterance components that have been viewed in the scenario-specific

training corpus, as in [15]); however, this prevents the use of unmodeled language and is philosophi-

cally similar to simply generating more template sensor statements. A tradeoff between corpus size

and scenario specificity is evident: using a larger and more diverse corpus allows a greater range

of natural language inputs, but makes language less scenario-specific. The goal of this work is to

explore solutions that allow sufficiently general language that could reasonably be expected to be

used in a given scenario.

The following provides some deeper intuition into the obstacles to natural language human

sensing, as well as one possible solution for how to arrive at the template statement observation

likelihood P (Di
k = j | Ok).

4.2 Scenario-Specific Natural Language Pipeline

At the root of the problem in defining P (Di
k = j | Ok) is the notion of word sense matching :

how similar is the sense4 of one word, compared to the sense of another word? State-of-the-art

methods in comparing words rely on embedding some representation of the word in a metric space,

then defining a distance metric between words in that space. For instance, the word2vec framework

can be trained in massive corpora to learn word embeddings for the majority of words in a language.

3 This combination of labels requires a search over the power set of all labels; while this is an intriguing avenue of
research, it is outside the scope of our current work due to computational requirements. As with categorical labels
discussed in section 3.1.6, we assume mutual exclusion between all possible statements.

4 Note that we must consider word senses rather than words themselves, as individual words may have many
meanings (e.g. plant in the phrase “near the plant” may refer to a building or vegetation.). In general, we can discuss
comparing words, though it is important to remember that their senses must be compared rather than the words
themselves.
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(a) Full token-matching problem. (b) Token-matching problem reformulated as a Hidden
Markov Model.

Figure 4.3: Probabilistic graphical models of the token-matching problem between structured
statement tokens and observed, processed unstructured statement tokens.

We will discuss the embedded similarity measures used to compare words in section 4.2.4, but we

must first identify the points of comparison.

In our natural language framework, Ok is an unstructured utterance – this means we do

not know which elements of Ok map to structured elements that select Di
k. In order to compare

elements, we must first divide divide the unstructured language into tokens: meaningful units that

may be comprised of one or more words. For example, Fig. 4.1 includes one possible area reference

as, the billiard room; this multi-word token retains an indivisible unit of meaning that changes based

on component modification (“a billiard room” implies one of many, rather than a specific room;

“the ball room” characterizes an entirely different room type; “the billiard ball” may reference an

object in the environment, rather than a room).

Once we achieve this tokenization of the observed utterance Ok = {t1, t2, . . . , tNT
}, we can

similarly decompose our our unobserved semantic statement into tokens Dk = {d1, d2, . . . , dNM
},

using the categorical archetypes shown in Fig. 4.1. These components form the basis for comparison,

with a graphical representation of this comparison shown in Fig. 4.6a. To explore this comparison in

a tractable manner, we assert that the Markov property holds between unobserved tokens, arriving

at the graphical model shown in Fig. 4.6b. Thus, we define the probabilistic relationship between

Ok and Dk as follows:



www.manaraa.com

53

P (Dk | Ok) ∝ P (dk,1, dk,2, . . . , dk,NT
, tk,1, tk,2, . . . , tk,NT

)

= P (dk,1)P (tk,1 | dk,1)P (dk,2 | dk,1)P (tk,2 | dk,2)× . . .

× P (dk,NT
| dk,NT−1)P (tk,NT

| dk,NT
)

(4.2)

Now, we can probabilistically compare Ok and Dk by defining transition probabilities between

template components P (dk,i+1 | dk,i) and observation probabilities of utterance components given

template components P (tk,i | dk,i). However, this formulation imposes a one-to-one mapping

between observed utterance tokens and unobserved statement tokens, imposing a constraint ofNT =

NM . As well, ordering must be defined to provide proper transition and observation probabilities.

In order to ensure proper tokenization and ordering, we define a pipeline to process the

natural language input (shown graphically in Fig. 4.4), the components of which will be discussed in

sequential order throughout the following subsections. This pipeline pre-processes natural language

input, decomposes the input into one or more sets of ordered tokens, and performs the token-to-

token comparison to arrive at P (Dk | Ok).

Some components of this pipeline are scenario-specific, as they require training on scenario-

specific experimental data, such as full utterances, hand-generated tokenizations and hand-generated

categorical labels of multi-word tokens. A general pipeline using off-the-shelf components (such as

a part-of-speech tagger) and without any training data is outside the scope of this work due to

the complexity required in integrating several general-purpose tools into a problem-specific envi-

ronment. The training data was collected for three purposes: to better define the natural language

used by humans; to determine how well the pre-defined template sentences cover the space of given

utterances; and to be used as training data for pipeline components. The specifics of data collection

are discussed in more detail in concert with the experimental setup in section 5.2.

4.2.1 Multi-word Tokenization

The tokenizer portion of the natural language pipeline decomposes an input utterance Ok

into a distinct set of meaningful single- or multi-word units, {t1, t2, . . . , tNT
}. This is achieved
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Figure 4.4: Proposed NLP pipeline (left) with example (right).
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Figure 4.5: Step-by-step multi-word tokenization process. Brackets encapsulate each considered
word-pair, underlines denote individual tokenizations, a checkmark denotes that a word-pair has
been classified as grouped and an x mark denotes that a word-pair has been classified as not
grouped.
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(a) Symmetric conditional probability score for lemma-
tized word pairs.

(b) Raw frequency score for part-of-speech tagged word
pairs.

Figure 4.6: Examples of two association measures used to score transformations on word-pairs.
The (u, v) word pair selected is highlighted in red, with the value of its association measure shown
in below the graph.

through classifying adjacent words based on whether or not they should be grouped within the

same token. Each ordered word pair, (u, v) is assigned a probability of being grouped, g = 1, or

ungrouped, g = 0, based on a pre-trained softmax classifier, P (g | u, v). The process is illustrated

in Fig. 4.5.

In order to train a word-pair grouping classifier, we first identify some features which we

can use for supervised learning with our training data. Michelbacher [52] identifies eight different

association measures between word-pairs; these are a measure of statistical joint predictiveness

for the event of one word occurring within the same word-pair as another word. The association

measures vary from simple (the frequency measure, which scores based on the number of occurrences

of a word pair in a corpus) to complex (the log-likelihood hypothesis measure, which finds the

likelihood ratios of co-occurrence hypotheses). For a full description of these association measures,

see section 3.3 of [52].

To better improve classification accuracy, we consider association measures on transforma-
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tions on the input words rather than on the input words themselves. We score lemmata, the

canonical form of a words (e.g. “run” instead of “running”, “ran” or “runs”), by transforming each

word into its lemma and finding association measures between all lemmata. We also score part-of-

speech tags, the categories of words that conform to similar grammatical rules (e.g. nouns, adverbs,

prepositions, etc.), by finding association measures between each part-of-speech pair. Examples of

these are shown in Fig. 4.6. Note the sparsity of data - some word pairs, such as (‘do’, ‘not’) have

strong association scores do to their frequent pairwise occurrence within the training corpus, yet

many others, such as (‘the’, ‘forward’) have weak or nil association scores.

Given 8 association scores and 2 word transformations, we now have a 16-dimensional feature

vector with which to train our classifier. We can train a softmax classifier, as described in section

2.1.2, with labeled training data to learn the 16-dimensional weight vector corresponding to the

features. Note that some lemmata may be previously unobserved; their association scores are

excluded. However, since part-of-speech tags are far more limited than lemmata, an 8-dimensional

feature vector can easily be recovered. In short, lemmata-based association measures provide

specificity, whereas part-of-speech-based association measures provide generality.

4.2.2 Semantic Label Tagging

Once we have multi-word tokens, our goal is to assign labels to each token so that we can

match each token to a place within the pre-defined template categories (target, positivity, spatial

relation, etc.). Linear-chain conditional random field (CRF)s [53] are a well-known technique for

assigning labels to sequences of inputs, similar to hidden markov models (HMMs) but undirected.

HMMs are generative models, in that they model joint probabilities P (S, T ) between a ran-

dom variable over observed values T and a random variable over hidden variables S. This requires

the enumeration of all possible sequences of observed variables, which is often intractable. In con-

trast, CRFs are discriminative models, defining only the conditional probability P (S | T ), which is

significantly less complex as only the observed values of T are considered (i.e., we need not model

the prior P (T )).
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Figure 4.7: Linear-chain CRF model, where shaded circles are observed and open circles are hidden
variables.

Within our NLP context, we assign semantic labels sz ∈ S which range over some finite set of

possible labels S to each observed token tz ∈ T for token index z = 1, 2, . . . , Z. We assume this is a

linear-chain CRF, in that the graph is composed of two undirected sequences of random variables

S = (s1, s2, . . . , sZ) and T = (t1, t2, . . . , tZ) as shown in Fig. 4.7. This graphical assumption allows

us to take the context of nearby labels and tokens when assigning the specific label sz to the specific

token tz.

We can evaluate the joint distribution over the label sequence S given the observed tokens

T :

Pθ(S|T ) ∝ exp

∑
e∈E,k

λkfk(e, S|e, T ) +
∑
v∈V,k

µkgk(v, S|v, T )

 (4.3)

fk(·) and gk(·) are transition feature functions and state feature functions, respectively, that

are defined a priori. λk, µk are parameters to be learned from training data. We pre-define the

set of feature functions fk and gk based on the CRF++ framework [54], with feature function

templates shown in Listing 4.1 for both unigram and bigram models that each generate a set of

indicator feature functions.

Once θ has been learned, we can take

argmax
s

Pθ(S|T ) (4.4)

to find the most likely labels associated with individual tokens within context of both
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neighouring labels and neighbouring tokens. At this state of the pipeline, we have a set of label-

token pairs {sz, tz}Zz=1 that can be used to match structured templates.

Listing 4.1: CRF++ feature function templates

# Unigram

U00:%x [−2 ,0 ]

U01:%x [−1 ,0 ]

U02:%x [ 0 , 0 ]

U03:%x [ 1 , 0 ]

U04:%x [ 2 , 0 ]

U05:%x[−1 ,0]/%x [ 0 , 0 ]

U06:%x [0 ,0 ]/% x [ 1 , 0 ]

# Bigram

B

4.2.3 Sensor Statement Templates

Given our label-token pairs, we can use pre-defined template structures to ensure both correct

ordering between utterance tokens and statement tokens, as well as define the statement token

transition probabilities P (dk+1 | dk).

Known dictionary-based templates can be transformed into a tree structure, e.g. the problem-

specific structure shown in Fig. 4.8. Each node represents a category containing one or more possible

tokens all associated with the same category label; for instance, the Spatial Relation: Object node

may contain, front, left, back, right and near, whereas the Spatial Relation: Area node may contain

inside, near and outside. If each categorical node is expanded into a set of token nodes, then

each path through the tree from the root to a leaf node generates one statement. Thus, transition

probabilities between dki and dki+1
can be derived by parent-child relationships:
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Figure 4.8: Tree-based human sensor statement template. Ellipses denote category nodes, each
containing one or more possible archetypal labels.

P (dk,i+1 | dk,i) =


1
ν if PARENTdk,i+1

= dk,i

0 otherwise

(4.5)

where ν is the number of tokens captured by the template node that contained dk,i+1. This assumes

all possible paths are equally likely within the constrained paths specified by the template.

As well, this structure can be used to identify dense utterances that map to multiple state-

ment templates. Once each utterance token has been labeled through the CRF, these labels can be

compared to paths through the statement template tree to enumerate all contained template state-

ments. For example, the phrase, “The blue robot is in the kitchen, heading to the library,” contains

one target, two spatial relations and two groundings, mapping to two different paths through the

statement template tree. A greedy algorithm can then be used to identify common elements and

distinct elements, providing one or more structured orderings for the labeled unstructured utterance

tokens.
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4.2.4 Word Sense-Matching

Calculation of the observation probabilities asks the question, ‘What is the probability of

observing the token tk,i, given that I have selected the template token dk,i?’. This question relates

to the core issue of lexical uncertainty in our problem: the probability of observing, for instance,

near given that the template word is next to is expected to be non-unity; furthermore, since∑
tk,i

P (tk,i | dk,i) = 1 and tk,i spans the English language, we notice little discrimination between

two words from the conditional probability.

To compare tokens, we use word similarity measures provided by the word2vec framework.

The efficient SGNS method developed by Mikolov et al. uses a softmax function (c.f. [27] eq. 2) to

relate the probability of one word, wi, represented by its input and output vectors vi and v′i, given

another word, wj , represented by its input and output vectors vj and v′j :

p(wi | wj) =
exp

(
v′ Ti vj

)∑W
w=1 exp (v′ Tw vj)

(4.6)

Since W is the number of words in the vocabulary (likely in the millions for unstructured

language), p(wi | wj) will be both small and nearly flat over the vocabulary. A common measure of

word similarity, in place of conditional probability, is to instead take the cosine similarity measure

between output word vectors. This similarity measure need not sum to 1 for all words and is exactly

1 for identical words. A first step approach would be to replace the token observation probability

P (tk,i | dk,i) with a token observation similarity score s(tk,i, dki), weight all possible statements by

their joint scores:

s(Dk, Ok) = P (d1)s(t1, d1)P (d2 | d1)s(t2, d2)× . . .

× s(dNT
, dNT−1)P (tNT

| dNT
)

(4.7)

While this bypasses the Bayesian probabilistic framework developed in section 4.1, it provides

a useful first step towards relating unstructured utterances to template statements.

The following section provides proof-of-concept results in generating s(Dk, Ok) for some test
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Table 4.1: Observation likelihood values P (Dk | Ok) for select unstructured natural language
inputs.

Unstructured input phrase

I know a robot is near the bookcase. I know a robot is next to the bookcase. I know a robot is not next to the book-
case.

I am pretty sure one of those guys is
somewhere close to that pile of books

Template statement s(Dk, Ok) Template statement s(Dk, Ok) Template statement s(Dk, Ok) Template statement s(Dk, Ok)

I know a robot is near
the bookcase.

0.0111 I know a robot is in front
of the bookcase.

0.0073 I know a robot is not in
front of the bookcase.

0.0084 I think a robot is right of
the bookcase.

0.0037

I know a robot is near
the fridge.

0.0103 I know a robot is in front
of the fridge.

0.0067 I know a robot is not in
front of the fridge.

0.0081 I know a robot is right of
the bookcase.

0.0037

I know a robot is near
the hallway.

0.0099 I know a robot is right of
the bookcase.

0.0067 I know a robot is not in
front of the desk.

0.0078 I think a robot is in front
of the bookcase.

0.0035

I know a robot is near
the billiard room.

0.0095 I know a robot is right of
the fridge.

0.0063 I know a robot is not
right of the bookcase.

0.0078 I think a robot is right of
the fridge.

0.0035

I know a robot is near
the kitchen.

0.0095 I know a robot is in front
of the desk.

0.0061 I know a robot is not
right of the fridge.

0.0075 I know a robot is in front
of the bookcase.

0.0035

phrases and using the argmaxDk
s(Dk, Ok) to select template sensor statements that are most

similar to the input utterance for Bayesian fusion.

4.3 Preliminary Natural Language Sensing Results

To gain intuition for the word sensing matching component of the NLP pipeline, four utter-

ances with varying degrees if lexical distance from pre-defined template statements are considered,

where each utterance is used for data fusion. These utterances are compared to 2682 possible

template statements. The four input phrases are shown and assumed to have been tokenized and

labeled correctly by previous pipeline elements in order to demonstrate the sense matching portion

of the pipeline independently.

These four utterances, as well as the 5 highest scoring template statements based on s(Dk, Ok),

are shown in Table 4.1. With a known semantic map and a GM prior, the Bayesian inference up-

dates using the most likely sensor template as selected by the natural language pipeline are shown

in Fig. 4.9.

From left-to-right, the four columns in Table 4.1 demonstrate the effects of increasing dissim-

ilarity with template statements: the first input sentence is exactly a sensor statement template;

the second input sentences replaces a spatial relation template token, ‘near’, with a non-template

token, ‘next to’; the third input sentence replaces the grounding and changes the positivity; and

the fourth is an imprecise reformulation of the first sentence.
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(a) Prior belief.

(b) Posterior after fusing information from utterance,
“I know a robot is near the bookcase.”

(c) Posterior after fusing information from utterance,
“I know a robot is next to the bookcase.”

(d) Posterior after fusing information from utterance,
“I know a robot is not next to the bookcase.”

(e) Posterior after fusing information from utterance,
“I am pretty sure one of those guys is somewhere close
to that pile of books.”

Figure 4.9: Example results for Bayesian inference with natural language human sensor statements.
The target is marked as a red circle, and is positioned near a reference object labeled as a bookcase
marked as a small tan rectangle. Both are positioned in the lower-right quadrant of the map.

We see that the first utterance, “I know a robot is near the bookcase”, is best characterized by

its exact matching template statement; the value of s(Dk, Ok) for the most likely template statement

is not particularly distinct from the other template statements. The statement token transition

probability P (dk,i+1 | dk,i) is expected to be uniform over all statements whose components are

derived from the same categorical labels, and the token similarity measure s(dk,i, tk,i) is expected



www.manaraa.com

64

to help distinguish between template statements given some known score. However, since this

similarity measure takes the cosine distance between word vector representations within the context

of the entire corpus, the similarity between contextually dissimilar terms (e.g. fridge and bookcase)

is not apparent. Clearly, a similarity measure that takes in the appropriate context is required for

greater disambiguation between phrases.

Similar results are seen for the other three test utterances: the most similar statements are

a good approximation of the input utterance, but the difference between template statements is

minimal.
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Chapter 5

Experimental Validation Testbed

An experimental testbed was developed alongside the synthesis, compression and natural

language sensing techniques covered in previous chapters. This allowed practical validation of the

developed algorithms and methodologies, as well as data collection for a greater understanding of

what informative natural language statements human would provide.

This chapter contains two sections: the first describes the indoor search problem conceived

for experimental validation of human sensor models; the second describes a pilot study in which

human subjects provided natural language information to assist their robotic partner to be used

as and training data for the pipeline described in section 4.2.

5.1 Cops and Robots Testbed

We apply our techniques to a target search scenario we call ‘Cops and Robots’, in which

one ‘cop’ robot searches for multiple ‘robber’ robots, with the assistance of a human ‘deputy’.

The objective of the human-robot team (the cop and deputy) is to ‘capture’ the robber robots,

achieved by the cop robot orienting itself toward the robber robot within a 1 meter radius from the

robber. The cop robot maintains a state estimate Xr
k for each robber r (nominally, this scenario is

performed with three visually distinct robbers, r ∈ {Roy,Pris,Zhora}), explores the area by taking

a planned path to the maximum a posteriori (MAP) point of the GM fusion posterior for one robot

r (chosen from a preset target capture order). At each time step, the cop fuses negative information

corresponding to its target detection viewcone generated by hard camera data ζk. Human sensor
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data Dk is fused as it arrives. The scenario terminates once all robbers are captured.

Each robot is modeled after the open-source Turtlebot design provided by Willow Garage,

with: a Microsoft Kinect for RGB visuals and depth data to avoid obstacles; an Odroid U3 carrying

2GB of RAM and an 1.7 GHz quad-core ARM processor for on-board computation; and an iRobot

Create base for mobility. Traditional wheel encoders and accelerometers are not used.

The indoor search environment consists of semantically distinct landmarks and areas, as

shown as a map in Fig. 5.1a and as a physical environment in Fig. 5.1b. Fourteen Vicon Bonita-series

motion-capture cameras surround the field, providing localization of all map elements (primarily

the robots). This also allows objects to be tracked in a simulation environment (Gazebo) in real

time.

The human deputy is located remotely and uses an web-based interface shown in Fig. 5.2

to communicate with the cop. The human can either view the cop’s camera feed, or select a

view from one of three security cameras in the environment. The human can also select from a

list of observations to send a sensor statement to the cop. These statements are structured by

five selection parameters: certainty, target, spatial relation, grounding (lower-left of Fig. 5.2).

Alternatively, questions generated by the cop using VOI [50], seen lower-right, can be answered by

the human to the same effect.

A remote backend simulation written in Python provides the mission and goal planning

infrastructure, the pre-generated human sensor models generated through synthesis of human sensor

models with respect to all reference groundings (e.g. Fig. 5.3), a prior belief based on the size and

shape of each area (seen in Fig. 5.4), as well as the VBIS fusion updates. This interacts with a

robot operating system (ROS) environment that provides a communication infrastructure, as well

as navigation software for global A* planning and a dynamic window approach for local, reactive

planning around unforeseen obstacles [55].

The robbers can either be static targets, remaining in place for the duration of a scenario, or

dynamic targets, moving to randomly selected goal poses within the map.
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(a) Semantic map with labels describing object (regular) and area (bolded) reference groundings.

(b) Physical indoor search environment.

Figure 5.1: One configuration of the experimental indoor search space with semantically distinct
reference objects/areas and active robotic agents.
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Figure 5.2: Web-based human-robot interface. Clockwise from top-left are the camera views, the
target location probability map, a questioner module showing questions posed by the cop robot, and
a codebook for human sensory input (yes/no answers to queries or free-form selectable codebook
inputs possible).

Figure 5.3: Synthesized likelihood for near a reference grounding.
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Figure 5.4: Prior target location belief based on known map areas.

5.2 Integrated Human-Robot Search Pilot Study

A pilot study was performed to better understand unstructured natural language inputs

humans may provide. Human subjects were given five minutes of pre-recorded video feed from

a previously executed dynamic search scenario and asked to inform their robot partner about

the robber robots. They provided unstructured natural language input through a chat interface,

Fig. 5.5, which shows one frame of the video feed provided to the human, as well as the chat interface

with suggested terms based on the template dictionaries. The green button toggles between manual

camera selection and a 5-second cycle between all available camera feeds, in an effort to encourage

the human to provide information (either negative or positive information) from several viewpoints

rather than remaining locked to one.

The 12 subjects, all current or prospective students at the time the data was taken, provided

200 total utterances. Of these, 36 were identified as uninformative (e.g. “Get him!!!”, “Get your

act together.”). Each of the 164 remaining utterances were matched by hand to reasonably close

template sensor statements. For example, the unstructured utterance, “Pris might be in the hall-

way...” was associated by hand to the template statement, “I think Pris is inside the hallway.”

In a minority of cases, individual utterances were associated with multiple template statements

(e.g. the utterance, “i can see movement in the hallway,” associates with the joint observations
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Figure 5.5: Data collection interface for unstructured natural language sensor statements.

of, “I know a robot is moving,” and “I know a robot is inside the hallway.”). With 2682 possible

template statements related to the known semantic map, only 6 were deemed unable to associate

with a template statement. These cases required information that was unavailable or ambiguous,

such as “A robot is in front of the other robot.”

While this collected data was necessary for the development of the NLP pipeline described in

section 4.2, useful information was also gleaned from subject feedback. A primary point of concern

included the disorientation and lack of situational awareness due to the auto-cycling of cameras –

awareness is an critical factor in human-robot teaming [56]. This particularly frustrated subjects

while they were typing utterances, as the camera view would often switch during text entry. The

number of utterances provided in 5 minutes varied significantly between test subjects, from eight

utterances to 24 utterances. It was noted that subjects who were both more familiar with the
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experimental setup as well as nominally faster typists would provide more utterances, as expected.

In several cases, human subjects provided ambiguous references such as, “near the black box” in

an environment with two reference objects that could conceivably both be described as black boxes

(a fridge and a filing cabinet).

A rigorous human subject study would be instrumental in providing generalizable insight

into unstructured natural language human sensor statements, but these preliminary results from

the pilot study are nevertheless useful in guiding development of the natural language interface.
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Chapter 6

Conclusion

This chapter recaps the motivating problems of the work, summarizes the main contributions

outlined in this thesis, and provides suggestions for future avenues of research.

In human-robot teaming, robots are often limited in autonomous reasoning capabilities due to

a lack of information provided by sensors. The perceptive capabilities of humans, which continue to

outpace those of robots until robotic perception is solved, make humans a worthwhile information

source for their robotic partners. Semantic language is an efficient communication mechanism for

human-generated soft data, but must be translated into a likelihood function in order for the robot

to perform Bayesian inference and incorporate the data into its probabilistic state belief.

6.1 Contributions

6.1.1 Softmax Likelihood Synthesis

One of the most promising techniques for Bayesian inference with categorical semantic labels

requires dense data to define softmax likelihood functions. In investigating properties of the softmax

function, it was noted that the log-odds hyperplanes that function as equiprobable class boundaries

can be used as constraints on model parameters. A priori knowledge, such as known geometry of

reference objects, can be used to impose these constraints on model parameters, allowing for either

uniquely defined parameter set or an underdetermined parameter set that may use sparse data

for parameter tuning. This allows softmax models to be constructed with minimal data, while

accounting for the size and shape of reference objects.
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6.1.2 Multi-observation Likelihood Compression

Softmax likelihood synthesis is leveraged to enable efficient multi-observation likelihood com-

pression. Some input semantic statements such as, “The target is in front of the house, inside the

yard,” contain observations relating to multiple softmax classes simultaneously. However, when

combining these likelihoods through direct multiplication, the softmax denominator experiences

combinatorial blowup due to the exponential set of joint observations in each model, causing the

data fusion step to become intractable. This paper shows that two methods, geometric compres-

sion and nearest neighbour compression, can achieve great speedup at minimal accuracy loss. We

showed that geometric fusion for multi-observation likelihoods can be computed online for simple

MMS models.

6.1.3 Natural Language Human Sensor Models

Current research for natural language communication in the context of human-robot teaming

focuses primarily on providing natural language commands to robot counterparts. We have inves-

tigated the preliminaries of natural language human sensing, in which an unstructured natural

language utterance is mapped to semantically meaningful template statements and then used for

Bayesian inference. A formal problem definition was presented and promising example results were

shown from passing natural language inputs through a scenario-specific natural language pipeline.

6.2 Future Research

6.2.1 Softmax Likelihood Synthesis

A priori knowledge is currently used to defined softmax constraints; however, on-the-fly

semantic map generation in uncertain environments [21] could be used to provide both labels and

geometries in place of a priori knowledge.

As well, synthesis of models around non-convex polytopes remains an open issue, which

impacts the speed and accuracy of the geometric MMS compression technique.



www.manaraa.com

74

6.2.2 Multi-observation Likelihood Compression

Current MMS geometric compression techniques generate multiple softmax models with con-

vex joint observation likelihoods with disjoint dominance regions. An ideal solution would be to

construct a single non-convex joint observation likelihood from these disjoint dominance regions.

This requires careful consideration of which normals for the component polytopes should be main-

tained at the MMS level, as well as a non-convex synthesis technique.

Furthermore, results for multi-observation likelihood compression require generalization: sen-

sitivity analysis on elements such as the total number of classes contained in the compressed model

would be helpful in selecting the ideal tradeoff between compression and accuracy.

6.2.3 Natural Language Human Sensor Models

Lastly, a great deal of work remains before natural language human sensing is a solved

problem. Two main avenues of research are identified: first, a context-specific similarity measure

would help disambiguate terms which are quite similar within the context of a massive training

corpus; second, context-independent natural language components, such as part-of-speech taggers,

could be leveraged to help generalize the translation mechanism between unstructured utterances

and structured template statements.
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